

*

Fig. 1. X-ray diffraction patterns of natural and synthetic kyanite and sillimanite (Cu-K_a radiation). A: upper curve—natural kyanite; lower curve—synthetic kyanite. B: upper curve—natural sillimanite; lower curve—synthetic sillimanite.

631

		Experi	ments Re	sults	
(1	Kao = kaolinite, (G = gibbsite, A =	= andalusi	te, Ky = kyani	ite, $S = sillimanite$,
	Q =	: quartz, C = cor	undum. *	Metastable pha	ise.)
Run No.	Pressure (bars)	Temperature (°C.)	Duration (hrs.)	Reactants	Products
38	$19,100 \pm 100$	975 ± 25	11/2	Kao + G	Ky
40	$18,600 \pm 500$	1000 ± 100	1	Kao + G	Ky
41	21.200 ± 100	910 ± 90	11/4	Kao + G	$Ky + Q^* + C^*$
44	18.900 ± 300	1000 ± 25	11/2	A	$Ky + Q^* + C^*$
48	$21,400 \pm 200$	1035 ± 20	13/4	Kao + G A	Ky Ky
49	$12,100 \pm 100$	1045 ± 30	11/2	A Kao + G	$S + Q^* + C^*$ $S + Q^* + C^*$
51	$24,400 \pm 300$	1320 ± 20	1	A	Ky
53	$12,500 \pm 100$	1050 ± 25	11/4	Kao + G	$S + Q^* + C^*$
66	$23,400 \pm 100$	1080 ± 50	11/4	Al ₂ SiO ₅ gel	$Ky + Q^* + C^*$
78	$16,000 \pm 100$	1100 ± 20	1	Kao + G A	$S + Q^* + C^*$ $S + Q^* + C^*$
79	$7,500 \pm 100$	750 ± 100	11/2	Kao + G	$S + Q^* + C^*$
85	$12,200 \pm 200$	845 ± 20	31/4	Kao + G	$S + Q^* + C^*$
88	$22,600 \pm 400$	>1280	1/4	Kao + G A	Ky S
90	$17,000 \pm 100$	$975 \pm 30 \\ 1055 \pm 30$. 23/4	Kao + G Kao + G	$\begin{array}{c} S+Q^*+C^*\\ Ky^*+Q^*+C^* \end{array}$
91	$17,000 \pm 100$	1020 ± 20	31/4	Kao + G	$S + Q^* + C^*$
93	$18,600 \pm 200$	1015 ± 10	3	Kao + G	$Ky + Q^* + C^*$
95	$22,900 \pm 400$	1325 ± 50	1	Kao	Ky + Q
101	21,800 ± 100	1250 ± 200	1/2	Kao A	$\frac{Ky + Q}{S}$
106	$21,000 \pm 100$	$1245 \pm 30 \\ 1305 \pm 30$	1	A Kao	Ky Ky + S + Q
112	$19,600 \pm 100$	1260 ± 25	11/2	Kao A	S + Q $S + Q^* + C^*$
115	$18,100 \pm 100$	1110 ± 30	1/2	Kao	$S + Q + C^*$
117	$19,000 \pm 100$	1105 ± 15	3	Kao	S + Q
120	$23,900 \pm 200$	1220 ± 50	23/4	S	Ky
127	$17,700 \pm 100$	995 ± 10	61/2	Kao	$S + Q + C^*$
128	18.600 ± 100	1340 ± 30	73/4	Kv	$S + Kv^*$

IDENTIFICATION OF PHASES

Preliminary identification of phases produced was made on a Norelco high-angle x-ray diffractometer, using Cu-K_a radiation. The diffraction patterns of the synthetic products were compared with those of natural kyanite and sillimanite (fig. 1). The x-ray patterns of sillimanite and mullite differ in 2θ between 50° and 60° (Kennedy, 1955 and personal communication), and the patterns of the synthetic sillimanite match that of natural sillimanite in this interval. The synthetic sillimanite has $n_a = 1.655 \pm 0.005$ and $n_{\gamma} =$ 1.675 ± 0.005 . These indices are slightly lower than those of natural sillimanite ($n_a = 1.657 - 1.661$, $n_{\gamma} = 1.677 - 1.684$), but they are considerably higher than those of mullite ($n_a = 1.642$, $n_{\gamma} = 1.654$). Most natural sillimanite contains a small amount of iron, and this may account for the higher indices.

632